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In eukaryotic cells, primary transcripts are processed and

bound by proteins before export to the cytoplasm. Nuclear

production of export-competent messenger ribonucleoprotein

particles (mRNPs) is a complicated process, and mRNP

biogenic events that function sub-optimally are rapidly

attacked by surveillance leading to degradation of the mRNA.

Export of nuclear mRNAs is therefore constantly challenged by

the opposing force of mRNA retention and decay. This balance

ensures that only ‘perfect’ transcripts persist, and that non-

functional and potentially deleterious transcripts are removed

early in their biogenesis. Thus, eukaryotic systems of mRNP

quality control can be viewed as simple Darwinian principles

operating at the molecular level.
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Introduction
Transcripts generated by RNA polymerase II (RNAPII)

are processed in several steps during maturation into

functional messenger ribonucleoprotein particles

(mRNPs). In eukaryotic cells, processing occurs in the

nucleoplasm before export and in most cases even before

mRNP release from the gene. Capping of the 50-end,

splicing of intronic sequences and 30-end formation all

contribute to the generation of transcripts that are pack-

aged with proteins important for mRNP structure,

nuclear export and cytoplasmic function [1]. mRNA

processing and packaging events are connected to each

other and to transcription. This coupling serves to

increase the efficiency and specificity of mRNP formation

[2]. Coupling of mRNP maturation to transcription occurs

through at least three different kinds of contacts: first,

interaction of processing factors with the C-terminal

domain (CTD) of the large subunit of RNAPII; second,

interaction of mRNP packaging factors with the elongat-
www.sciencedirect.com
ing transcription complex; and third, interplay (at an

ill-defined level) of mRNP maturation factors with chro-

matin. The interconnection between transcription, pro-

cessing and packaging organizes mRNP maturation so

that difficulties or delays in assembly events can easily be

detected and offending transcripts degraded [3]. The best

characterized mRNA surveillance system is nonsense-

mediated decay (NMD), through which transcripts har-

boring a premature translational termination codon are

rapidly degraded (see review by Conti and Izaurralde in

this issue). However, recently other surveillance mechan-

isms have been shown to operate at earlier steps of mRNP

biogenesis [1]. These processes, in contrast to most

known cases of NMD, utilize nuclear mRNA turnover

factors, and are often coupled to transcription.

In this review, we will give an overview of nuclear

mRNA/mRNP transactions that are either known to be

subject to quality control or potentially could be. Most of

our inspiration originates from studies using the yeast

Saccharomyces cerevisiae, and consequently this organism

will form the basis of discussion.

mRNA turnover in the nucleus: the players
Bulk mRNA turnover takes place in the cytoplasm, where

degradation pathways have been intensively studied.

Recently, enzymes involved in nuclear mRNA decay

have been identified that have activities comparable to

cytoplasmic RNA decay enzymes and are capable of

degrading the mRNA from its 50- and 30-ends. Which

pathway predominates appears to depend on features of

the substrate mRNA (e.g. whether it is intron-containing

or not, and how far it has progressed in its biogenesis)

[4–7].

Nuclear mRNA decay in the 30–50 direction involves the

nuclear exosome, a complex containing several 30–50

exoribonucleases [8]. A core exosome is found in both

the cytoplasm and nucleus; the nuclear exosome in yeast

is distinguished by the associated 30–50 exoribonuclease

Rrp6p as well as by Lrp1p/Rrp47p and the putative RNA

helicase Mtr4p/Dob1p [9–11]. In addition to mRNA

decay, the nuclear exosome is involved in processing of

small nuclear and nucleolar RNAs (snRNAs and snoR-

NAs), ribosomal RNAs (rRNAs) and pre-rRNA spacer

fragments.

Nuclear mRNA decay in the 50–30 direction is carried out

by Rat1p, which has a cytoplasmic cousin in Xrn1p. Rat1p

and Xrn1p can in fact functionally substitute for one

another if artificially targeted to the compartment where
Current Opinion in Cell Biology 2005, 17:287–293



288 Nucleus and gene expression
the other normally resides. However, only Rat1p is essen-

tial [12].

For exonucleases to gain access to the body of the mRNA,

the 50 cap and 30 poly(A)-tail must first be removed. Yeast

decappers in the nucleus are not well described; however,

a fraction of both of the human decapping enzymes

Dcp1p and Dcp2p are nuclear and functional homologues

exist in yeast (see review by Fillman and Lykke-Ander-

sen in this issue). Nuclear decapping is also stimulated by

the Lsm2–8p complex [5]. In yeast, the major cytoplasmic

deadenylase activity resides with the Ccr4p and Pop2p

nucleases, complexed with several accessory factors [11].

Although genetic and biochemical data suggest that

Ccr4p and Pop2p also have nuclear roles, nuclear dead-

enylase activity of these factors has not yet been demon-

strated [13]. The Pan2p/Pan3p complex can also catalyze

deadenylation, and one proposed nuclear function of

Pan2p/Pan3p is the Pab1p-dependent trimming of the

newly added poly(A) tail down to its species-specific

size of 55–75 adenosines [14]. Interestingly, the dead-

enylase activity involved in nuclear mRNA decay appears

to be processive, in contrast to the distributive nature

of cytoplasmic deadenylation [5]. This suggests that

although cytoplasmic and nuclear mRNA turnover may

share common factors, the composition of the deadenyla-

tion complexes might differ in the two compartments.

Additionally, nuclear endonucleolytic activities may pro-

vide entry sites for exonucleases. One such endoribonu-

clease is Rnt1p, which specifically cleaves double-

stranded (structured) RNAs [15]. However, mRNAs tar-

geted for endonucleolytic attack are probably few. The

currently known nuclear mRNA degradation factors are

listed in Table 1.

Transcription, mRNA processing and mRNA
surveillance interfaces
Early transcription elongation and capping

Capping of the 50-end occurs when the nascent transcript

is �30 nucleotides long. Efficient capping requires pro-

moter-proximal pausing of RNAPII, and recruitment of
Table 1

Nuclear degradation activities in yeast.

Enzyme Activity

Rrp6p 30–50 exoribonuclease

Rrp47p/Lrp1p Exosome cofactor

Core exosome 30–50 exoribonucleases

Mtr4p/Dob1p Putative RNA helicase

Rat1p 50–30 exoribonuclease

Dcp1p Decapping enzyme

Dcp2p Decapping enzyme

Lsm2-8p Stimulates nuclear decapping

Ccr4p/Pop2p poly(A)-specific exoribonuclease

Pan2p/Pan3p poly(A)-specific exoribonuclease

Rnt1p Endoribonuclease
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capping enzymes is stimulated by the phosphorylation of

Ser5-residues in the CTD heptad repeats characteristic of

the early phase of transcription [16]. In turn, execution of

capping triggers re-activation of RNAPII. This provides a

possible capping checkpoint ensuring that only capped

transcripts are further elongated. In the context of this

review, it is of interest that the transcription elongation

factor Spt5p is present at active yeast loci in these early

phases of transcription [17]. Drosophila Spt5p physically

interacts with the Drosophila nuclear exosome, and both

are recruited with similar timing to transcriptionally

active heat shock loci on polytene chromosomes [18].

The Spt5p/exosome relationship provides a possible link

between early transcription and mRNA surveillance in

that the presence of exosome activity early during tran-

scriptional elongation could serve to degrade transcripts

with a free 30-end that arise from defective transition of

RNAPII into the elongation phase. Such ‘co-transcrip-

tional degradation’ could also deal with truncated tran-

scripts arising more generally from abortive transcription

events (Figure 1, stage 2).

What happens if transcription elongation proceeds with-

out capping? Intriguingly, recent studies in yeast suggest

that transcription termination occurs by the ‘torpedo’

model, in which Rat1p, after transcript cleavage, attacks

the unprotected 50-end and catches up with the transcrib-

ing RNAPII to dissociate it from the DNA template [19].

As Rat1p and its stimulatory factor Rai1p can both be

detected at the 50-end of coding regions, a similar

mechanism might serve to eliminate transcripts with an

exposed 50-end arising from unsuccessful capping events

(Figure 1, stage 1) [19]. Perhaps this contributes to the

decrease in mRNA stability upon mutation of the Ceg1p

capping enzyme [20].

Splicing

Results from the Tollervey laboratory have demonstrated

that levels of several pre-mRNAs in the yeast prp2-1 late

splicing mutant are stabilized up to 50-fold upon inacti-

vation of nuclear exosome components and, to a lesser

extent, upon inactivation of Rat1p [6]. Thus, extrapolat-

ing from these substrates, nuclear decay of pre-mRNA

primarily occurs in the 30–50 direction, whereas 50–30

decay occurs to a minor extent. Increased pre-mRNA

levels, in nuclear decay mutant backgrounds, are often

accompanied by increases in mRNA levels, which sug-

gests direct competition between splicing and nuclear

degradation (Figure 1, stage 6). However, levels of repor-

ter transcripts harboring 50-splice-site or branchpoint

mutations are not detectably affected by disruption of

the nuclear decay machinery [6]. This most likely reflects

short nuclear dwell times of these RNAs. Indeed, experi-

ments initiated in the Rosbash laboratory 15 years ago

showed that nuclear retention of pre-mRNAs appears to

require the early stages of splicing commitment to occur

— mutation of either the 50 splice site or branchpoint
www.sciencedirect.com
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Figure 1

RNAPII

A
A

A
A

A
A

RNAPII

RNAPII

(7)

(8)

AAAAA
(5)

AAAAA

A

AAAAA
(6)

RNAPII

RNAPII

A
A

A

AAAAA

Current Opinion in Cell Biology

(1) (2) (3) (4)

Small intergenic RNAs

Capping

Rat1p

Abortive
transcription

Exosome Polyadenylation
Rrp6p

(Exosome)

Rat1p

Trf4p
Exosome

Exosome
Deadenylase?

Rnt1p?
Decapping
Lsm2–8p

Rat1p

Exosome
Deadenylase?

Decapping
Lsm2–8p

Rat1p

Nuclear retained mRNA
Splicing

Transcriptional
down-regulation

Mlp1p
Mlp2p

Retention of unprocessed/
unpackaged mRNP
(mRNA degradation?)

Export of
processed/packaged
mRNP

Nucleus

Cytoplasm

Nuclear surveillance and degradation of mRNA/mRNP. Inefficient mRNA/mRNP reactions are readily attacked by degradative activities at various

points in mRNP biogenesis. (1) Unsuccessful capping potentially allows co-transcriptional Rat1p-mediated degradation. (2) Abortive RNAPII

transcription provides a possible entry site for 30–50 exosomal decay. (3) Inefficiently polyadenylated mRNAs are subject to Rrp6p-mediated

degradation. (4) Presumably as a general means of transcriptional termination in yeast, RNAPII is chased down by Rat1p-mediated degradation

of the downstream cleavage product of nascent RNA. (5–6) mRNAs and pre-mRNAs are unstable if restricted to the nuclear compartment. 30-50

degradation is mediated by the nuclear exosome, possibly initiated by a hitherto unidentified deadenylase activity. Degradation from the 50-end

involves an unknown decapping activity stimulated by the Lsm2–8p complex, followed by exonucleolytic decay by Rat1p. For some substrates

the endoribonuclease Rnt1p may open the transcript for exonucleolytic decay. (7) Small RNAs transcribed from intergenic regions are degraded

by the nuclear exosome triggered by Trf4p. (8) Improperly packaged, as well as unspliced, mRNAs are retained by Mlp proteins at the nuclear

periphery. This negatively impacts transcription. See text for details. Blue or red lightning represents a productive or destructive impact on

a given process, respectively. The red ellipse represents the mRNA 30-end processing complex.
resulted in leakage of pre-mRNA into the cytoplasm

[21,22].

As pre-mRNA splicing is not an obligate RNAPII co-

transcriptional process, the exact localization of nuclear

pre-mRNA decay remains elusive [23,24]. However, a

recent effort from the Jacquier and Nehrbass laboratories

has identified the perinuclear protein Mlp1p as a factor

involved in pre-mRNA retention [25�]. In contrast to

other mutants leading to nuclear pre-mRNA accumula-
www.sciencedirect.com
tion, deletion of Mlp1p, or its partner Mlp2p, has no direct

effect on pre-mRNA splicing [25�]. Co-localization of

over-expressed Mlp1p and an intron-containing reporter

RNA suggests that pre-mRNA degradation could occur at

Mlp1p/Mlp2p gates at the nuclear rim (Figure 1, stage 8).

In support of this, a physical interaction between Mlp1p

and Rrp6p has been reported [26]. However, recent

data from the Stutz laboratory indicate that Mlp1p/

Mpl2p might operate through transcriptional repression

(Figure 1, stage 8; see also below) [27�].
Current Opinion in Cell Biology 2005, 17:287–293
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Poly(A)-tail formation and release from the locus: a

major quality control check point?

The 30-end of nearly all eukaryotic mRNAs is generated

by endonucleolytic cleavage followed by addition of a

terminal poly(A)-tail [28]. Addition of the poly(A)-tail by

poly(A) polymerases is a biphasic reaction with distinct

kinetic properties in vitro [29]. During the first, distribu-

tive phase, 9–10 adenosine monophosphate (AMP) resi-

dues are gradually added, whereas the second phase is

characterized by rapid and processive poly(A)-tail exten-

sion. During its synthesis, the poly(A)-tail is loaded with

factor(s) that regulate tail length and protect it from

degradation [14,30]. In yeast, two prominent poly(A)-

binding candidates in vivo are Pab1p and Nab2p. Inter-

estingly, the poly(A)-tail is also necessary for promoting

mRNA release from its site of transcription. In yeast

mutants affected in 30-end processing, heat shock RNAs

(hs-RNAs) are retained in close proximity to their site of

synthesis [4,31–33]. Furthermore, a plasmid-produced

mRNA containing a self-cleaving hammerhead ribozyme

element in place of cleavage and polyadenylation signals

is similarly inhibited in its progression away from the gene

[34�]. If, however, the DNA template is modified to

encode a stretch of 48 or more adenosines immediately

upstream of the ribozyme element, the RNA is efficiently

released. These data argue that, at least when the RNA is

produced out of its normal chromatin context, the mere

presence of a sufficiently long poly(A) tail is enough to

enable mRNP release. The tail-length requirement likely

reflects the need for a sufficient number of poly(A)-

binding factors to decorate the tail, and interestingly

mutation or deletion of Nab2p and Pab1p both result

in nuclear mRNA retention [35,36].

Transcription-site retention of hs-RNAs produced in

polyadenylation-malfunctioning mutants, as well as

strains deleted for Pab1p, is dependent on the nuclear

exosome component Rrp6p [4,32,35]. The molecular

mechanism underlying Rrp6p-dependent retention is

not well-defined. However, part of the answer may be

that this is yet another example of the struggle between

productive mRNP maturation events and mRNP

surveillance. We favor a suggestion, first put forward

by the Butler laboratory, that Rrp6p challenges Pap1p

during polyadenylation, creating a competition between

Pap1p-mediated polymerization and Rrp6p-mediated

degradation (Figure 1, stage 3) [37]. In this view, tran-

scription-site retention of mRNA in 30-end formation

mutants in the presence of Rrp6p is the result of antag-

onized poly(A)-tail synthesis, and mRNA release upon

Rrp6p removal occurs as a result of unchallenged residual

polyadenylation activity in these mutants. This model

fits nicely with data showing that read-through mRNAs

produced in yeast pre-mRNA cleavage and polyadenyla-

tion mutants are retained and degraded in the presence of

Rrp6p, or polyadenylated and released in its absence

[4,38].
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Another class of factors important for transcript progres-

sion away from the gene is the THO complex. This

complex was initially implicated in transcription elonga-

tion, but has more recently been shown to function at the

interface between transcription and mRNP formation by

recruiting the mRNA export factor and TREX (transcrip-

tion/export) complex member Sub2p to nascent RNA

[39,40]. In strains in which a THO component is deleted

or Sub2p is mutated, HSP104 transcripts exhibit two

interesting phenotypes: a HSP104 RNA-FISH signal

can be detected at or near its site of transcription, and

a pool of transcripts appear to be 30-end truncated [4,33].

Both phenotypes are reversed upon deletion of Rrp6p,

suggesting that 30-end truncation results from incomplete

degradation [4]. The localization of 30-end truncated

HSP104 species in a THO deletion strain is unclear;

however, complete — or nearly complete — transcripts

are retained, as determined by an RNA-FISH signal from

a probe targeted immediately upstream of the HSP104
RNA stop codon [4]. Interestingly, the genetic interac-

tions of a strain deleted for the THO complex member

Mft1p cluster with mutant alleles of factors of the 30-end

formation machinery (C Saguez, JR Olesen and TH

Jensen, unpublished). Perhaps retention and degradation

of transcripts in THO/Sub2p mutants is also a conse-

quence of the competition between Pap1p and Rrp6p.

The ability of Rrp6p and of the nuclear exosome to target

inefficiently polyadenylated species recalls recent results

on the nuclear degradation of stable structured RNAs by

the Trf4p poly(A) polymerase system. Trf4p, and its

paralog Trf5p, are related to DNA polymerase b and

belong to the nucleotidyl transferase superfamily, which

also includes canonical poly(A) polymerases [41]. In a

recent study, the Anderson laboratory showed that aber-

rant (hypomethylated) tRNAmet, caused by mutation of a

tRNA methyltransferase, is unstable as a result of poly-

adenylation by Trf4p and subsequent degradation by

Rrp6p and the exosome [42��]. It was noted that this

degradation pathway is reminiscent of the bacterial sys-

tem, where oligo-adenylation of structured RNAs pro-

vides a tag for 30–50 exonucleolytic decay [43]. It is now

clear that degradation of other eukaryotic RNAs, such as

snRNAs, snoRNAs, 5SrRNA and small RNAs transcribed

from hitherto un-annotated genomic regions, also pro-

ceeds through a polyadenylation-dependent exosome

pathway (A Jacquier, D Libri and B Seraphin, personal

communication; [44,45]). The evidence that Trf4p-

mediated polyadenylation destabilizes RNAs is opposed

to the more traditional notion of the poly(A)-tail as an

mRNA stability element. However, it was previously

suggested that such a ‘bacterial-like’ degradation

mechanism could account for Rrp6p-mediated quality

control at eukaryotic transcription sites [46]. Intriguingly,

oligo(A)-addition by Trf4p shows some similarities with

adenosine polymerisation by Pap1p during its distributive

phase (A Jacquier, D Libri, and B Seraphin, personal
www.sciencedirect.com
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communication). A fascinating possibility is therefore that

Rrp6p might be able to gain access to inefficiently poly-

adenylated substrates during this phase of polyadenyla-

tion. Perhaps by entering the processive phase with

subsequent addition of poly(A)-binding proteins, an

mRNP escapes degradation.

Physiological roles of nuclear mRNA
surveillance systems
The question remains whether nuclear mRNA surveil-

lance has a physiological function besides ridding the cell

of aberrant transcripts. The NMD machinery, for exam-

ple, functions not only to degrade aberrant mRNAs, but

also to regulate levels of several physiological messages

[47,48]. Two recent examples suggest that the nuclear

exosome might also be involved in the organization of

normal gene expression.

The first example concerns regulation of NAB2 RNA

levels, which are increased three- to five-fold upon dis-

ruption of the nuclear exosome [49]. Strikingly, this effect

requires a sequence of 26 consecutive adenosines in the

NAB2 30-UTR that, perhaps by mimicking a Trf4p-

produced substrate, sensitizes the transcript to exosome

degradation. Inactivation of Nab2p also leads to increased

NAB2 RNA levels, suggesting that Nab2p itself might be

involved in this regulation of its expression. This provides

the first indication that mRNA export and mRNA degra-

dation might intersect at the regulatory level, and that

Nab2p may have dual functions in facilitating mRNA

export in one situation and initiating degradation of the

message in another.

The second example concerns the aforementioned RNAs

transcribed from intergenic regions of the yeast genome.

In wild-type cells, these RNAs are rapidly removed by the

Trf4p/exosome pathway, whereas in Drrp6 cells they are

remarkably stable (A Jacquier, D Libri, B Seraphin, M

Ares and M Rosbash, personal communication). On the

basis of these findings, one might speculate that a major

surveillance role for the nuclear exosome under physio-

logical conditions is to degrade these RNAs. Whether

such an activity in preserving transcriptional fidelity

relates to the recent proposal that Rrp6p and Lrp1p/

Rrp47p might be involved in RNA removal under

DNA- and RNA-damaging conditions remains to be seen

[50].

Given the many roles of the nuclear exosome, what else

could be in store for us? Whole-genome yeast microarray

experiments demonstrate that very few conventional

mRNAs are affected upon RRP6 deletion, and instead

the fraction of polyadenylated stable RNAs and RNAs

derived from intergenic regions increases substantially (A

Jacquier, D Libri, B Seraphin, M Ares and M Rosbash

personal communication; [50]). The NAB2 regulatory

loop may therefore be an exception rather than a general
www.sciencedirect.com
finding. These results also pose an experimental chal-

lenge; as fascinating as the myriad nuclear functions of

Rrp6p are, they complicate our ability to delineate the

direct consequences of its disruption.

Nuclear mRNA surveillance and feedback on
transcription
Some of the co-transcriptionally recruited mRNA export

factors are also directly, or indirectly, involved in tran-

scription. This gives the mRNP potential to modulate

transcription rate. Possible entities involved are the

THO/TREX and Sac3p/Thp1p complexes, both of which

contain components implicated in transcription and

mRNA export, and whose mutation results in defects

in both processes [4,51–53]. For some genes, the mole-

cular network extends from transcription factors to com-

ponents of the nuclear membrane, and sometimes this

connection can be paralleled by relocation of the gene

from the nuclear interior to the nuclear periphery upon

transcriptional induction [4,51–54].

Functional evidence of a connection between the nuclear

periphery and mRNP transcription comes from the Stutz

laboratory, which reported that levels of intronless

mRNAs produced in a strain temperature-sensitive for

the mRNP assembly factor Yra1p increase upon Mlp1p

and/or Mlp2p deletion [27�]. Interestingly, the level of

Mlp2p-mediated decrease of a nucleus-retained mRNA

correlated with the degree of transcriptional inhibition of

the corresponding gene. The authors therefore suggest

that a negative feedback loop exists in response to an

mRNP assembly defect [27�]. The potential benefit

deriving from such regulation was recently illustrated

by the finding that slowing down transcription in yeast

mutants where mRNP maturation is crippled partially

restores mRNA quality [55]. Interestingly, loss of Mlp1p/

Mlp2p also restores growth of strains mutated for mRNP

factors Yra1p and Nab2p. This suggests that Mlp-proteins

might act as ‘mRNP sensors’ for these important mRNP

constituents at the nuclear periphery (Figure 1, stage 8).

Whether this activity of the Mlp barrier is also important

for recognizing pre-mRNAs remains an open question. A

full understanding of the fascinating layer of quality

control at the nuclear periphery and its relationship to

transcription awaits further clarification.

Conclusions
A huge proportion of mRNA is turned over in the nuclear

compartment, and although most of this is in the form of

spliced-out introns, a fair share of exonic sequence is

presumably lost to quality control. As exemplified in this

review, we propose that most, if not all, nuclear quality

control is based on kinetic competition between opposing

processes. In this way, the intimate connection between

productive and destructive mRNA transactions may serve

not only to eliminate unwanted molecules but also to

generally optimize gene expression.
Current Opinion in Cell Biology 2005, 17:287–293



292 Nucleus and gene expression
At least in the context of the relatively simple and

compact genome of S. cerevisiae, it seems the strategy is

to compromise somewhat on the precision of mRNP

synthesis and to compensate for this by investing in

efficient quality control. Characterization of mRNA sur-

veillance pathways in higher eukaryotes will reveal

whether this is also a strategy chosen by cells with a more

complex genomic organization.
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